A fluctuation-corrected functional of convex Poisson-Boltzmann theory

Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-09, Vol.51 (38), p.385001
Hauptverfasser: Blossey, R, Maggs, A C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic potential , or sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been recast, via a Legendre transform, as a mean-field theory involving the dielectric displacement field . In this paper we consider the path integral formulation of this dual theory. Exploiting the transformation between φ and , we formulate a dual sine-Gordon field theory in terms of the displacement field and provide a strategy for precise numerical computations of free energies beyond the leading order.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/aad352