Scale invariant transfer matrices and Hamiltionians
Given a direct system of Hilbert spaces s↦Hs (with isometric inclusion maps ιst:Hs→Ht for s⩽t) corresponding to quantum systems on scales s, we define notions of scale invariant and weakly scale invariant operators. In some cases of quantum spin chains we find conditions for transfer matrices and ne...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-03, Vol.51 (10), p.104001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a direct system of Hilbert spaces s↦Hs (with isometric inclusion maps ιst:Hs→Ht for s⩽t) corresponding to quantum systems on scales s, we define notions of scale invariant and weakly scale invariant operators. In some cases of quantum spin chains we find conditions for transfer matrices and nearest neighbour Hamiltonians to be scale invariant or weakly so. Scale invariance forces spatial inhomogeneity of the spectral parameter. But weakly scale invariant transfer matrices may be spatially homogeneous in which case the change of spectral parameter from one scale to another is governed by a classical dynamical system exhibiting fractal behaviour. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/aaa4dd |