Metric on the space of quantum states from relative entropy. Tomographic reconstruction

In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, N level quantum states, by means of a suitably defined coordinate free differential calculus. The cases N=2, N=3 are discussed in detail and nota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-08, Vol.50 (33), p.335302
Hauptverfasser: Man'ko, Vladimir I, Marmo, Giuseppe, Ventriglia, Franco, Vitale, Patrizia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, N level quantum states, by means of a suitably defined coordinate free differential calculus. The cases N=2, N=3 are discussed in detail and notable limits are analyzed. The radial limit procedure has been used to recover quantum metrics for lower rank states, such as pure states. By using the tomographic picture of quantum mechanics we have obtained the Fisher-Rao metric for the space of quantum tomograms and derived a reconstruction formula of the quantum metric of density states out of the tomographic one. A new inequality obtained for probabilities of three spin-1/2 projections in three perpendicular directions is proposed to be checked in experiments with superconducting circuits.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/aa7d7d