Conserved currents in the six-vertex and trigonometric solid-on-solid models

We construct quasi-local conserved currents in the six-vertex model with anisotropy parameter η by making use of the quantum-group approach of Bernard and Felder. From these currents, we construct parafermionic operators with spin 1+iη/π that obey a discrete-integral condition around lattice plaquet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Phys.A 2017-04, Vol.50 (16), p.164003
Hauptverfasser: Ikhlef, Yacine, Weston, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct quasi-local conserved currents in the six-vertex model with anisotropy parameter η by making use of the quantum-group approach of Bernard and Felder. From these currents, we construct parafermionic operators with spin 1+iη/π that obey a discrete-integral condition around lattice plaquettes embedded into the complex plane. These operators are identified with primary fields in a c  =  1 compactified free Boson conformal field theory. We then consider a vertex-face correspondence that takes the six-vertex model to a trigonometric SOS model, and construct SOS operators that are the image of the six-vertex currents under this correspondence. We define corresponding SOS parafermionic operators with spins s  =  1 and s=1+2iη/π that obey discrete integral conditions around SOS plaquettes embedded into the complex plane. We consider in detail the cyclic-SOS case corresponding to the choice η=iπ( p−p′)/p, with p′
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/aa63ca