Inferring CO 2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model

Rising atmospheric CO 2 concentration ([CO 2 ]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO 2 fertilization effect. The CO 2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2020-08, Vol.15 (8), p.84009
Hauptverfasser: Ueyama, Masahito, Ichii, Kazuhito, Kobayashi, Hideki, Kumagai, Tomo’omi, Beringer, Jason, Merbold, Lutz, Euskirchen, Eugénie S, Hirano, Takashi, Marchesini, Luca Belelli, Baldocchi, Dennis, Saitoh, Taku M, Mizoguchi, Yasuko, Ono, Keisuke, Kim, Joon, Varlagin, Andrej, Kang, Minseok, Shimizu, Takanori, Kosugi, Yoshiko, Bret-Harte, M Syndonia, Machimura, Takashi, Matsuura, Yojiro, Ohta, Takeshi, Takagi, Kentaro, Takanashi, Satoru, Yasuda, Yukio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rising atmospheric CO 2 concentration ([CO 2 ]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO 2 fertilization effect. The CO 2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future climate, yet it has been elusive to quantify. For evaluating the CO 2 fertilization effect on land photosynthesis and transpiration, we developed a technique that isolated this effect from other confounding effects, such as changes in climate, using a noisy time series of observed land-atmosphere CO 2 and water vapor exchange. Here, we evaluate the magnitude of this effect from 2000 to 2014 globally based on constraint optimization of gross primary productivity (GPP) and evapotranspiration in a canopy photosynthesis model over 104 global eddy-covariance stations. We found a consistent increase of GPP (0.138 ± 0.007% ppm −1 ; percentile per rising ppm of [CO 2 ]) and a concomitant decrease in transpiration (−0.073% ± 0.006% ppm −1 ) due to rising [CO 2 ]. Enhanced GPP from CO 2 fertilization after the baseline year 2000 is, on average, 1.2% of global GPP, 12.4 g C m −2 yr −1 or 1.8 Pg C yr −1 at the years from 2001 to 2014. Our result demonstrates that the current increase in [CO 2 ] could potentially explain the recent land CO 2 sink at the global scale.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/ab79e5