Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator

In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-02, Vol.2020 (2), p.23109
Hauptverfasser: Perepelkin, E E, Sadovnikov, B I, Inozemtseva, N G, Burlakov, E V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23109
container_title Journal of statistical mechanics
container_volume 2020
creator Perepelkin, E E
Sadovnikov, B I
Inozemtseva, N G
Burlakov, E V
description In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polynomials degenerate into Laguerre polynomials. The diagonal elements of the kernel operator matrix are the Wigner functions of the harmonic oscillator, which do not introduce dissipation into the quantum system. The off-diagonal elements contain frequency oscillations responsible for dissipations in the quantum systems. Using the explicit representation of the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems.
doi_str_mv 10.1088/1742-5468/ab6f60
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ab6f60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatab6f60</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-e0d9c0fc7f4ab83e4ec8ce4e5e462353fa448a049e4ce1a20f0cc3ae7c3707953</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKt3j_kArs5usrvpUUr9AwUveg7pOLGpu8mSpFC_vbtUxIuXN8Nj3vD4MXZdwm0JSt2VrayKWjbqzmwa28AJm_1ap3_2c3aR0g5AVCDVjOHqMHQOXeY2xH4SnrfEPyl66ngYKJo8er3J0R04ddSTz4k7z8l9kLd7j9kFzzcmucSD5VsT--Ad8pDQdd2UvmRn1nSJrn7mnL09rF6XT8X65fF5eb8usFKQC4L3BYLF1kqzUYIkocJRa5JNJWphjZTKgFyQRCpNBRYQhaEWRQvtohZzBse_GENKkaweoutN_NIl6AmSnijoiYI-QhojN8eIC4PehX30Y8H_z78BfZxrSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</creator><creatorcontrib>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</creatorcontrib><description>In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polynomials degenerate into Laguerre polynomials. The diagonal elements of the kernel operator matrix are the Wigner functions of the harmonic oscillator, which do not introduce dissipation into the quantum system. The off-diagonal elements contain frequency oscillations responsible for dissipations in the quantum systems. Using the explicit representation of the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ab6f60</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><ispartof>Journal of statistical mechanics, 2020-02, Vol.2020 (2), p.23109</ispartof><rights>2020 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-e0d9c0fc7f4ab83e4ec8ce4e5e462353fa448a049e4ce1a20f0cc3ae7c3707953</citedby><cites>FETCH-LOGICAL-c280t-e0d9c0fc7f4ab83e4ec8ce4e5e462353fa448a049e4ce1a20f0cc3ae7c3707953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ab6f60/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Perepelkin, E E</creatorcontrib><creatorcontrib>Sadovnikov, B I</creatorcontrib><creatorcontrib>Inozemtseva, N G</creatorcontrib><creatorcontrib>Burlakov, E V</creatorcontrib><title>Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polynomials degenerate into Laguerre polynomials. The diagonal elements of the kernel operator matrix are the Wigner functions of the harmonic oscillator, which do not introduce dissipation into the quantum system. The off-diagonal elements contain frequency oscillations responsible for dissipations in the quantum systems. Using the explicit representation of the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems.</description><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKt3j_kArs5usrvpUUr9AwUveg7pOLGpu8mSpFC_vbtUxIuXN8Nj3vD4MXZdwm0JSt2VrayKWjbqzmwa28AJm_1ap3_2c3aR0g5AVCDVjOHqMHQOXeY2xH4SnrfEPyl66ngYKJo8er3J0R04ddSTz4k7z8l9kLd7j9kFzzcmucSD5VsT--Ad8pDQdd2UvmRn1nSJrn7mnL09rF6XT8X65fF5eb8usFKQC4L3BYLF1kqzUYIkocJRa5JNJWphjZTKgFyQRCpNBRYQhaEWRQvtohZzBse_GENKkaweoutN_NIl6AmSnijoiYI-QhojN8eIC4PehX30Y8H_z78BfZxrSw</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Perepelkin, E E</creator><creator>Sadovnikov, B I</creator><creator>Inozemtseva, N G</creator><creator>Burlakov, E V</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200227</creationdate><title>Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator</title><author>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-e0d9c0fc7f4ab83e4ec8ce4e5e462353fa448a049e4ce1a20f0cc3ae7c3707953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perepelkin, E E</creatorcontrib><creatorcontrib>Sadovnikov, B I</creatorcontrib><creatorcontrib>Inozemtseva, N G</creatorcontrib><creatorcontrib>Burlakov, E V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perepelkin, E E</au><au>Sadovnikov, B I</au><au>Inozemtseva, N G</au><au>Burlakov, E V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>2020</volume><issue>2</issue><spage>23109</spage><pages>23109-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polynomials degenerate into Laguerre polynomials. The diagonal elements of the kernel operator matrix are the Wigner functions of the harmonic oscillator, which do not introduce dissipation into the quantum system. The off-diagonal elements contain frequency oscillations responsible for dissipations in the quantum systems. Using the explicit representation of the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/ab6f60</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2020-02, Vol.2020 (2), p.23109
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_ab6f60
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20form%20for%20the%20kernel%20operator%20matrix%20elements%20in%20eigenfunction%20basis%20of%20harmonic%20oscillator&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Perepelkin,%20E%20E&rft.date=2020-02-27&rft.volume=2020&rft.issue=2&rft.spage=23109&rft.pages=23109-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/ab6f60&rft_dat=%3Ciop_cross%3Ejstatab6f60%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true