Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator

In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-02, Vol.2020 (2), p.23109
Hauptverfasser: Perepelkin, E E, Sadovnikov, B I, Inozemtseva, N G, Burlakov, E V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the matrix elements explicit expressions for the kernel operator in the harmonic oscillator eigenfunctions basis are obtained. The matrix elements are expressed in terms of the two complex variables new polynomials that were constructed in this paper. In the particular case, new polynomials degenerate into Laguerre polynomials. The diagonal elements of the kernel operator matrix are the Wigner functions of the harmonic oscillator, which do not introduce dissipation into the quantum system. The off-diagonal elements contain frequency oscillations responsible for dissipations in the quantum systems. Using the explicit representation of the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems.
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/ab6f60