Seismic wavefield simulation by a modified finite element method with a perfectly matched layer absorbing boundary
The finite element method is a very important tool for modeling seismic wave propagation in complex media, but it usually consumes a large amount of memory which significantly decreases computational efficiency when solving large-scale seismic problems. Here, a modified finite element method (MFEM)...
Gespeichert in:
Veröffentlicht in: | Journal of geophysics and engineering 2017-08, Vol.14 (4), p.852-864 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The finite element method is a very important tool for modeling seismic wave propagation in complex media, but it usually consumes a large amount of memory which significantly decreases computational efficiency when solving large-scale seismic problems. Here, a modified finite element method (MFEM) is proposed to improve efficiency. Triangular elements are employed to mesh the topography and the discontinuous interface more flexibly. In the two-dimensional case, the Jacobian matrix is obtained by using three controlling points instead of all nodes in each element with MFEM, which separates the Jacobian matrix from the stiffness matrix. The kernel matrices of the stiffness matrix rather than the global matrix are stored, and memory requirements are thus reduced significantly. Meanwhile, the element-by-element scheme is adopted to spare large sparse matrices and make the program easily parallelized. A second-order perfectly matched layer (PML) is also implemented to eliminate artificial reflections. Finally, the accuracy and efficiency of our algorithm are validated by numerical tests. |
---|---|
ISSN: | 1742-2132 1742-2140 |
DOI: | 10.1088/1742-2140/aa6b31 |