Precise determination of the top-quark on-shell mass via its scale- invariant perturbative relation to the top-quark mass

The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormaliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics C 2024-05, Vol.48 (5), p.53113
Hauptverfasser: Huang 黄, Xu-Dong 旭东, Wu 吴, Xing-Gang 兴刚, Zheng 郑, Xu-Chang 绪昌, Yan 闫, Jiang 江, Wu 吴, Zhi-Fei 知非, Ma 马, Hong-Hao 鸿浩
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormalization group invariance. In this paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual β -function and the quark mass anomalous dimension -function. These new degeneracy relations enable improved PMC scale-setting procedures for correct magnitudes of the strong coupling constant and -running quark mass to be determined simultaneously. By using these improved PMC scale-setting procedures, the renormalization scale dependence of the -on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or ) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark mass GeV as the input, we obtain GeV. Here, the uncertainties arise from errors combined with those from and the approximate uncertainty resulting from the uncalculated five-loop terms predicted through the Padé approximation approach.
ISSN:1674-1137
2058-6132
DOI:10.1088/1674-1137/ad2dbf