Discovery of new characterizations of parameter distributions in a semi- empirical mass model: an investigation by dividing an overdetermined system into numerous balanced subsystems

We propose and test a new method of estimating the model parameters of the phenomenological Bethe-Weizsäcker mass formula. Based on the Monte Carlo sampling of a large dataset, we obtain, for the first time, a Cauchy-type parameter distribution formed by the exact solutions of linear equation system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics C 2022-10, Vol.46 (10), p.104108
Hauptverfasser: Meng, Hai-Yan, Wang, Hua-Lei, Zhang, Zhen-Zhen, Liu, Min-Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and test a new method of estimating the model parameters of the phenomenological Bethe-Weizsäcker mass formula. Based on the Monte Carlo sampling of a large dataset, we obtain, for the first time, a Cauchy-type parameter distribution formed by the exact solutions of linear equation systems. Using the maximum likelihood estimation, the location and scale parameters are evaluated. The estimated results are compared with those obtained by solving overdetermined systems, e.g., the solutions of the traditional least-squares method. Parameter correlations and uncertainty propagation are briefly discussed. As expected, it is also found that improvements in theoretical modeling (e.g., considering microscopic corrections) decrease the parameter and propagation uncertainties.
ISSN:1674-1137
2058-6132
DOI:10.1088/1674-1137/ac7d44