Skyrmion motion induced by spin-waves on magnetic nanotubes
We investigate the skyrmion motion driven by spin waves on magnetic nanotubes through micromagnetic simulations. Our key results include demonstrating the stability and enhanced mobility of skyrmions on the edgeless nanotube geometry, which prevents destruction at boundaries — a common issue in plan...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2024-09, Vol.33 (10), p.107504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the skyrmion motion driven by spin waves on magnetic nanotubes through micromagnetic simulations. Our key results include demonstrating the stability and enhanced mobility of skyrmions on the edgeless nanotube geometry, which prevents destruction at boundaries — a common issue in planar geometries. We explore the influence of the damping coefficient, amplitude, and frequency of microwaves on skyrmion dynamics, revealing a non-uniform velocity profile characterized by acceleration and deceleration phases. Our results show that the skyrmion Hall effect is significantly modulated on nanotubes compared to planar models, with specific dependencies on the spin-wave parameters. These findings provide insights into skyrmion manipulation for spintronic applications, highlighting the potential for high-speed and efficient information transport in magnonic devices. |
---|---|
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/ad5d64 |