Effect of spatial heterogeneity on level of rejuvenation in Ni 80 P 20 metallic glass

Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses (MGs). In this work, molecular dynamics (MD) simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2022-09, Vol.31 (9), p.96401
Hauptverfasser: Chen, Tzu-Chia, Nasution, Mahyuddin KM, Jabbar, Abdullah Hasan, Shoja, Sarah Jawad, Siswanto, Waluyo Adi, Pranoto, Sigiet Haryo, Bokov, Dmitry, Magizov, Rustem, Mustafa, Yasser Fakri, Surendar, A., Zalilov, Rustem, Sviderskiy, Alexandr, Vorobeva, Alla, Vorobyev, Dmitry, Alkhayyat, Ahmed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses (MGs). In this work, molecular dynamics (MD) simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni 80 P 20 MGs. For this purpose, the samples are prepared with cooling rates of 10 10 K/s–10 12 K/s to make glassy alloys with different atomic configurations. Firstly, it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen, indicating the aggregations in both elastically soft and hard regions. After the primary evaluations, the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations. The results indicate that the sample with intermediate structural heterogeneity prepared with 10 11 K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation. The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.
ISSN:1674-1056
DOI:10.1088/1674-1056/ac615e