Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
We study how can an angular momentum coherent state ∣ τ 〉 keeps its form-invariant during time evolution governed by the Hamiltonian H = f ( t ) J + + f * ( t ) J − + g ( t ) J z . We discuss this topic in the context of boson realization of ∣ τ 〉 . By employing the entangled state representation ∣...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2019-09, Vol.28 (10), p.100301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study how can an angular momentum coherent state
∣
τ
〉
keeps its form-invariant during time evolution governed by the Hamiltonian
H
=
f
(
t
)
J
+
+
f
*
(
t
)
J
−
+
g
(
t
)
J
z
. We discuss this topic in the context of boson realization of
∣
τ
〉
. By employing the entangled state representation
∣
ζ
〉
and deriving a new binomial theorem involving two-subscript Hermite polynomials, we derive the wave function
〈
ζ
∣
τ
〉
, which turns out to be a single-subscript Hermite polynomial. Based on this result the maintenance of angular momentum coherent state during time evolution is examined, and the value of
τ
(
t
)
is totally determined by the parameters involved in the Hamiltonian. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/ab3a90 |