Collectively induced transparency and absorption in waveguide quantum electrodynamics with Bragg atom arrays
Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies. For atoms without free-sp...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2024-08, Vol.76 (8), p.85101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies. For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption (CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide quantum electrodynamics (QED) systems. |
---|---|
ISSN: | 0253-6102 1572-9494 |
DOI: | 10.1088/1572-9494/ad4f6f |