Cauchy matrix approach to three non-isospectral nonlinear Schrödinger equations

This paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays a central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in theoretical physics 2024-05, Vol.76 (5), p.55001
Hauptverfasser: Tefera, Alemu Yilma, Li, Shangshuai, Zhang, Da-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to develop a direct approach, namely, the Cauchy matrix approach, to non-isospectral integrable systems. In the Cauchy matrix approach, the Sylvester equation plays a central role, which defines a dressed Cauchy matrix to provide τ functions for the investigated equations. In this paper, using the Cauchy matrix approach, we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions. These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem. Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction. These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
ISSN:0253-6102
1572-9494
DOI:10.1088/1572-9494/ad35b1