Single-particle spectroscopies of p-wave and d-wave interacting Bose gases in normal phase
Motivated by experiments with interacting quantum gases across high partial wave resonance, we investigate the thermodynamic properties and single-particle spectra of Bose gases in normal phase for different interaction strengths for both p- and d-wave interactions. The equation of state, contact de...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2024-05, Vol.76 (5), p.55501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by experiments with interacting quantum gases across high partial wave resonance, we investigate the thermodynamic properties and single-particle spectra of Bose gases in normal phase for different interaction strengths for both p- and d-wave interactions. The equation of state, contact density, momentum distributions and self-energies of single-particle Green’s functions are obtained in the spirit of ladder diagram approximations. The radio-frequency (RF) spectrum, as an important experimental approach for detecting Feshbach molecules or the interaction effect, is calculated at different temperatures. A reversed temperature dependence on the Bose–Einstein condensation side and Bardeen–Cooper–Schrieffer side is identified for both p- and d-wave interactions. An estimate for the signal of RF spectra under typical experimental conditions is also provided. |
---|---|
ISSN: | 0253-6102 1572-9494 |
DOI: | 10.1088/1572-9494/ad3543 |