Novel (3 + 1)-dimensional variable-coefficients Boussinesq-type equation: exploring integrability, Wronskian, and Grammian solutions

In this paper, we introduce a novel (3 + 1)-dimensional variable-coefficients Boussinesq-type equation. We analyze its integrability using the Painlevé test and the N -soliton solution, demonstrating that both tests yield identical conditions. Using the Hirota bilinear form of the equation, we deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-12, Vol.99 (12), p.125250
Hauptverfasser: Madadi, Majid, Asadi, Esmaeel, Inc, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a novel (3 + 1)-dimensional variable-coefficients Boussinesq-type equation. We analyze its integrability using the Painlevé test and the N -soliton solution, demonstrating that both tests yield identical conditions. Using the Hirota bilinear form of the equation, we derive Wronskian and Grammian determinant solutions utilizing Plücker relations and the Jacobi identity for determinants. In particular, we use elementary transformation and long wave limit to get the determinant expression of m th-order lump solutions from the 2 m th-order Wronskian determinant solutions. Furthermore, we reveal a variety of novel semi-rational solutions using the Hirota method and Grammian determinant techniques.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad8d3e