Auto-Bäcklund transformation and exact solutions for a new integrable (2+1)-dimensional shallow water wave equation

Shallow water waves (SWWs) are often used to describe water flow and wave movement in shallow water areas. The article introduces a novel (2 + 1)-dimensional SWW equation. We prove that the equation is integrable and obtain an auto-Bäcklund transformation by truncating Painlevé expansion. Using the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-11, Vol.99 (11), p.115233
Hauptverfasser: Guo, Xinyue, Li, Lianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shallow water waves (SWWs) are often used to describe water flow and wave movement in shallow water areas. The article introduces a novel (2 + 1)-dimensional SWW equation. We prove that the equation is integrable and obtain an auto-Bäcklund transformation by truncating Painlevé expansion. Using the bilinear form of the equation, a new auto-Bäcklund transformation and some exact solutions are obtained. Besides, a convergent power series solution is derived using Lie symmetry method. These exact solutions can enrich mathematical modeling and help us understand nonlinear wave phenomena. Finally, conserved vectors are derived.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad8050