Periodicity of bipartite walk on biregular graphs with conditional spectra
In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive in...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2024-10, Vol.99 (10), p.105120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 105120 |
container_title | Physica scripta |
container_volume | 99 |
creator | Chen, Qiuting |
description | In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k . Kubota has given a characterization of periodicity of Grover’s walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota’s results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover’s walk on regular graphs. |
doi_str_mv | 10.1088/1402-4896/ad71ff |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad71ff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad71ff</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-2d7a32ab8df37cd9357b743586f788b0fa7cb449138453e63e2b3f725ec7505e3</originalsourceid><addsrcrecordid>eNp1UF1LwzAADKJgnb77mB9gXT6b9FGGOmWgD_oc0jTZMmtTkoyxf29LxTefDo674-4AuMXoHiMpl5ghUjJZV0vdCuzcGSj-qHNQIERxKWtWX4KrlPYIkYpUdQFe3230ofXG5xMMDjZ-0DH7bOFRd18w9CMT7fbQ6Qi3UQ-7BI8-76AJfeuzD73uYBqsyVFfgwunu2RvfnEBPp8eP1brcvP2_LJ62JSGIJ5L0gpNiW5k66gwbU25aASjXFZOSNkgp4VpGKsxlYxTW1FLGuoE4dYIjrilC4DmXBNDStE6NUT_reNJYaSmL9Q0XE3D1fzFaLmbLT4Mah8Ocayd_pf_AEY0YVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodicity of bipartite walk on biregular graphs with conditional spectra</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chen, Qiuting</creator><creatorcontrib>Chen, Qiuting</creatorcontrib><description>In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k . Kubota has given a characterization of periodicity of Grover’s walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota’s results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover’s walk on regular graphs.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad71ff</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>algebraic graph theory ; discrete quantum walks ; Grover’s walk ; periodicity ; quantum walks ; spectra</subject><ispartof>Physica scripta, 2024-10, Vol.99 (10), p.105120</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-2d7a32ab8df37cd9357b743586f788b0fa7cb449138453e63e2b3f725ec7505e3</cites><orcidid>0000-0001-5943-9200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad71ff/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Chen, Qiuting</creatorcontrib><title>Periodicity of bipartite walk on biregular graphs with conditional spectra</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k . Kubota has given a characterization of periodicity of Grover’s walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota’s results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover’s walk on regular graphs.</description><subject>algebraic graph theory</subject><subject>discrete quantum walks</subject><subject>Grover’s walk</subject><subject>periodicity</subject><subject>quantum walks</subject><subject>spectra</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UF1LwzAADKJgnb77mB9gXT6b9FGGOmWgD_oc0jTZMmtTkoyxf29LxTefDo674-4AuMXoHiMpl5ghUjJZV0vdCuzcGSj-qHNQIERxKWtWX4KrlPYIkYpUdQFe3230ofXG5xMMDjZ-0DH7bOFRd18w9CMT7fbQ6Qi3UQ-7BI8-76AJfeuzD73uYBqsyVFfgwunu2RvfnEBPp8eP1brcvP2_LJ62JSGIJ5L0gpNiW5k66gwbU25aASjXFZOSNkgp4VpGKsxlYxTW1FLGuoE4dYIjrilC4DmXBNDStE6NUT_reNJYaSmL9Q0XE3D1fzFaLmbLT4Mah8Ocayd_pf_AEY0YVc</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Qiuting</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5943-9200</orcidid></search><sort><creationdate>20241001</creationdate><title>Periodicity of bipartite walk on biregular graphs with conditional spectra</title><author>Chen, Qiuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-2d7a32ab8df37cd9357b743586f788b0fa7cb449138453e63e2b3f725ec7505e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algebraic graph theory</topic><topic>discrete quantum walks</topic><topic>Grover’s walk</topic><topic>periodicity</topic><topic>quantum walks</topic><topic>spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiuting</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodicity of bipartite walk on biregular graphs with conditional spectra</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>99</volume><issue>10</issue><spage>105120</spage><pages>105120-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k . Kubota has given a characterization of periodicity of Grover’s walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota’s results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover’s walk on regular graphs.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad71ff</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5943-9200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2024-10, Vol.99 (10), p.105120 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ad71ff |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | algebraic graph theory discrete quantum walks Grover’s walk periodicity quantum walks spectra |
title | Periodicity of bipartite walk on biregular graphs with conditional spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodicity%20of%20bipartite%20walk%20on%20biregular%20graphs%20with%20conditional%20spectra&rft.jtitle=Physica%20scripta&rft.au=Chen,%20Qiuting&rft.date=2024-10-01&rft.volume=99&rft.issue=10&rft.spage=105120&rft.pages=105120-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad71ff&rft_dat=%3Ciop_cross%3Epsad71ff%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |