Periodicity of bipartite walk on biregular graphs with conditional spectra
In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive in...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2024-10, Vol.99 (10), p.105120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study a class of discrete quantum walks, known as bipartite walks. These include the well-known Grover’s walks. A discrete quantum walk is given by the powers of a unitary matrix U indexed by arcs or edges of the underlying graph. The walk is periodic if U k = I for some positive integer k . Kubota has given a characterization of periodicity of Grover’s walk when the walk is defined on a regular bipartite graph with at most five eigenvalues. We extend Kubota’s results—if a biregular graph G has eigenvalues whose squares are algebraic integers with degree at most two, we characterize periodicity of the bipartite walk over G in terms of its spectrum. We apply periodicity results of bipartite walks to get a characterization of periodicity of Grover’s walk on regular graphs. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ad71ff |