Exceptional points and quantum phase transition in a fermionic extension of the Swanson oscillator

Motivated by the structure of the Swanson oscillator which is a well-known example of a non-Hermitian quantum system consisting of a general representation of a quadratic Hamiltonian, we propose a fermionic extension of such a scheme which incorporates two fermionic oscillators together with bilinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-10, Vol.99 (10), p.105534
Hauptverfasser: Sinha, Akash, Ghosh, Aritra, Bagchi, Bijan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the structure of the Swanson oscillator which is a well-known example of a non-Hermitian quantum system consisting of a general representation of a quadratic Hamiltonian, we propose a fermionic extension of such a scheme which incorporates two fermionic oscillators together with bilinear-coupling terms that do not conserve particle number. We determine the eigenvalues and eigenvectors, and expose the appearance of exceptional points where two of the eigenstates coalesce with the corresponding eigenvectors exhibiting self-orthogonality with respect to the bi-orthogonal inner product. The model admits a quantum phase transition—we discuss the two phases and also demonstrate that the ground-state entanglement entropy exhibits a discontinuous jump indicating the transition between the two phases.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ad706b