Finite-time sliding mode control methods for a class of non-integer-order systems with input saturations and its application

Control and synchronization of chaotic dynamical systems is a key issue in engineering that has numerous applications in the applied sciences. In this research, single input finite-time sliding mode (FTSMC) control algorithms are developed to synchronize and stabilize a class of three-dimensional no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-08, Vol.98 (8), p.85227
Hauptverfasser: Dosti, Marzieh, Matinfar, Mashalla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control and synchronization of chaotic dynamical systems is a key issue in engineering that has numerous applications in the applied sciences. In this research, single input finite-time sliding mode (FTSMC) control algorithms are developed to synchronize and stabilize a class of three-dimensional non-integer order systems where input saturation is present. Using the non-integer version of the Lyapunov stability theory (LST) and the dynamic-free idea, techniques are devised to suppress the improper behavior of the aforementioned fractional-order (FO) chaotic systems without unpleasant chattering phenomena. The proposed FTSMC approach can be utilized to stabilize and synchronize systems that include model uncertainty, external disturbances, and input saturation. The developed single input techniques have the benefits of being model-free, robust to uncertainty, user-friendly, and establishing equilibrium in a finite amount of time. In addition, the efficacy and applicability of the FTSMC approaches are shown by synchronizing two different industrial FO chaotic systems and chaos suppressing of the PMSM chaotic system utilizing these methods.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ace5f4