Investigation of fractal fractional nonlinear Korteweg-de-Vries-Schrödinger system with power law kernel

In this research article, we invetsigate the Schrödinger-KdV equation under Caputo fractal fractional (FF) operator. We analyze and prove the existence, uniqueness and convergence of the solution via fixed point theory and nonlinear functional analysis. We apply the Yang transform homotopy perturbat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-08, Vol.98 (8), p.85202
Hauptverfasser: Khan, Asif, Khan, Abid Ullah, Ahmad, Shabir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research article, we invetsigate the Schrödinger-KdV equation under Caputo fractal fractional (FF) operator. We analyze and prove the existence, uniqueness and convergence of the solution via fixed point theory and nonlinear functional analysis. We apply the Yang transform homotopy perturbation method (YTHPM) to solve the Schrödinger-KdV equation with Caputo FF operator. Using the YTHPM, we derive an approximate solution to the Schrödinger-KdV equation and provide graphical representations of the result to showcase the behaviour of solution for various sets of fractional and fractal orders. Our findings and error analysis demonstrate that the YTHPM and the Caputo fractal-fractional operator are effective in solving the Schrödinger-KdV equation.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/ace08b