Hölder continuity of Oseledets subspaces for linear cocycles on Banach spaces
Let f : X → X be an invertible Lipschitz transformation on a compact metric space X . Given a Hölder continuous invertible operator cocycles on a Banach space and an f -invariant ergodic measure, this paper establishes the Hölder continuity of Oseledets subspaces over a compact set of arbitrarily la...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-01, Vol.98 (1), p.15203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f
:
X
→
X
be an invertible Lipschitz transformation on a compact metric space
X
. Given a Hölder continuous invertible operator cocycles on a Banach space and an
f
-invariant ergodic measure, this paper establishes the Hölder continuity of Oseledets subspaces over a compact set of arbitrarily large measure. This extends a result in [V Araujo, A I Bufetov and S Filip, On Hölder-continuity of Oseledets subspaces, J. Lond. Math. Soc. 2016, 93 : 194–218]. for invertible operator cocycles on a Banach space. This paper also proves the Hölder continuity in the non-invertible case. Finally, some applications are given in the end of this paper. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/aca3d9 |