Hölder continuity of Oseledets subspaces for linear cocycles on Banach spaces

Let f : X → X be an invertible Lipschitz transformation on a compact metric space X . Given a Hölder continuous invertible operator cocycles on a Banach space and an f -invariant ergodic measure, this paper establishes the Hölder continuity of Oseledets subspaces over a compact set of arbitrarily la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-01, Vol.98 (1), p.15203
Hauptverfasser: Luo, Chiyi, Zhao, Yun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f : X → X be an invertible Lipschitz transformation on a compact metric space X . Given a Hölder continuous invertible operator cocycles on a Banach space and an f -invariant ergodic measure, this paper establishes the Hölder continuity of Oseledets subspaces over a compact set of arbitrarily large measure. This extends a result in [V Araujo, A I Bufetov and S Filip, On Hölder-continuity of Oseledets subspaces, J. Lond. Math. Soc. 2016, 93 : 194–218]. for invertible operator cocycles on a Banach space. This paper also proves the Hölder continuity in the non-invertible case. Finally, some applications are given in the end of this paper.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/aca3d9