Efficient algebraic solution for a time-dependent quantum harmonic oscillator

Using operator ordering techniques based on Baker-Campbell-Hausdorff (BCH) relations of the su(1,1) Lie algebra and a time-splitting approach, we present an alternative method of solving the dynamics of a time-dependent quantum harmonic oscillator for any initial state. We find an iterative analytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2020-10, Vol.95 (10), p.105102
Hauptverfasser: Tibaduiza, Daniel M, Pires, Luis, Rego, Andreson L C, Szilard, Daniela, Zarro, Carlos, Farina, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using operator ordering techniques based on Baker-Campbell-Hausdorff (BCH) relations of the su(1,1) Lie algebra and a time-splitting approach, we present an alternative method of solving the dynamics of a time-dependent quantum harmonic oscillator for any initial state. We find an iterative analytical solution given by simple recurrence relations that are very well suited for numerical calculations. We use our solution to reproduce and analyse some results from the literature to prove the usefulness of our method. We also discuss the efficiency in squeezing by comparing the parametric resonance modulation with the so-called Janszky-Adam scheme.
ISSN:0031-8949
1402-4896
1402-4896
DOI:10.1088/1402-4896/abb254