Design and simulation of vertically-stacked nanowire transistors at 3 nm technology nodes
Gate-all-around (GAA) cylindrical Si channel nanowire field-effect transistor (NW-FET) devices have the potential to replace FinFETs in future technology nodes because of their better channel electrostatics control. In this work, 3D TCAD physics-based simulations are performed for the first time to...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2020-01, Vol.95 (1), p.14001 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gate-all-around (GAA) cylindrical Si channel nanowire field-effect transistor (NW-FET) devices have the potential to replace FinFETs in future technology nodes because of their better channel electrostatics control. In this work, 3D TCAD physics-based simulations are performed for the first time to evaluate the potential of NW-FETs at extreme scaling limits of 3 nm using quantum corrected 3D density gradient finite element simulations. Simulations are also performed to study the effects of process-induced variabilities, such as metal grain granularity (MGG) on 3 nm gate length device performance in the sub-threshold region. The importance of MGG induced variability for gate-all-around stacked devices having 3 horizontal nanowires in the 3 nm technology nodes is shown. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ab4621 |