The ambiguity function and the displacement operator basis in quantum mechanics
We present a method for calculating expectation values of operators in terms of a corresponding c-function formalism which is not the Wigner-Weyl position-momentum phase-space, but another space. Here, the quantity representing the quantum system is the expectation value of the displacement operator...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2019-12, Vol.94 (12), p.124001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method for calculating expectation values of operators in terms of a corresponding c-function formalism which is not the Wigner-Weyl position-momentum phase-space, but another space. Here, the quantity representing the quantum system is the expectation value of the displacement operator, parametrized by the position and momentum displacements, and expectation values are evaluated as classical integrals over these parameters. The displacement operator is found to offer a complete orthogonal basis for operators, and some of its other properties are investigated. Connection to the Wigner distribution and Weyl procedure are discussed and examples are given. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ab3376 |