Experimentally probing the algorithmic randomness and incomputability of quantum randomness

The advantages of quantum random number generators (QRNGs) over pseudo-random number generators (PRNGs) are normally attributed to the nature of quantum measurements. This is often seen as implying the superiority of the sequences of bits themselves generated by QRNGs, despite the absence of empiric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2019-04, Vol.94 (4), p.45103
Hauptverfasser: Abbott, Alastair A, Calude, Cristian S, Dinneen, Michael J, Huang, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advantages of quantum random number generators (QRNGs) over pseudo-random number generators (PRNGs) are normally attributed to the nature of quantum measurements. This is often seen as implying the superiority of the sequences of bits themselves generated by QRNGs, despite the absence of empirical tests supporting this. Nonetheless, one may expect sequences of bits generated by QRNGs to have properties that pseudo-random sequences do not; indeed, pseudo-random sequences are necessarily computable, a highly nontypical property of sequences. In this paper, we discuss the differences between QRNGs and PRNGs and the challenges involved in certifying the quality of QRNGs theoretically and testing their output experimentally. While QRNGs are often tested with standard suites of statistical tests, such tests are designed for PRNGs and only verify statistical properties of a QRNG, but are insensitive to many supposed advantages of QRNGs. We discuss the ability to test the incomputability and algorithmic complexity of QRNGs. While such properties cannot be directly verified with certainty, we show how one can construct indirect tests that may provide evidence for the incomputability of QRNGs. We use these tests to compare various PRNGs to a QRNG, based on superconducting transmon qutrits and certified by the Kochen-Specker theorem, to see whether such evidence can be found in practice. While our tests fail to observe a strong advantage of the quantum random sequences due to algorithmic properties, the results are nonetheless informative: some of the test results are ambiguous and require further study, while others highlight difficulties that can guide the development of future tests of algorithmic randomness and incomputability.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/aaf36a