Entanglement meter: estimation of entanglement with single copy in interferometer

Efficient certification and quantification of high dimensional entanglement of composite systems are challenging both theoretically as well as experimentally. Here, we demonstrate how to measure the linear entropy, negativity and the Schmidt number of bipartite systems from the visibility of Mach–Ze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2023-04, Vol.25 (4), p.43026
Hauptverfasser: Kanjilal, Som, Pandey, Vivek, Pati, Arun Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient certification and quantification of high dimensional entanglement of composite systems are challenging both theoretically as well as experimentally. Here, we demonstrate how to measure the linear entropy, negativity and the Schmidt number of bipartite systems from the visibility of Mach–Zehnder interferometer using single copies of the quantum state. Our result shows that for any two qubit pure bipartite state, the interference visibility is a direct measure of entanglement. We also propose how to measure the mutual predictability experimentally from the intensity patterns of the interferometric set-up without having to resort to local measurements of mutually unbiased bases. Furthermore, we show that the entanglement witness operator can be measured in a interference setup and the phase shift is sensitive to the separable or entangled nature of the state. Our proposal bring out the power of Interferometric set-up in entanglement detection of pure and several mixed states which paves the way towards design of entanglement meter.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/accd8d