Morphology of three-body quantum states from machine learning

The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-06, Vol.23 (6), p.65009
Hauptverfasser: Huber, David, Marchukov, Oleksandr V, Hammer, Hans-Werner, Volosniev, Artem G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/ κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/ κ = 1 and 1/ κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ac0576