Intrinsic geometry and director reconstruction for three-dimensional liquid crystals
We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in c...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2021-06, Vol.23 (6), p.63006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 63006 |
container_title | New journal of physics |
container_volume | 23 |
creator | Pollard, Joseph Alexander, Gareth P |
description | We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised. |
doi_str_mv | 10.1088/1367-2630/abfdf4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_abfdf4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_661ac6104d274d909c0297d8352f34f0</doaj_id><sourcerecordid>2538371009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a4fc80d563508438e03aaf9dec3992cfc080219f1708282a75b97ccd0296531f3</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhSMEEqWwM0ZiYCH02k4ce0QVj0qVWMpsuX4UV22c2u7Qf49LEDAgpmMdfedY996iuEZwj4CxCSK0rTAlMJFLq219Uoy-rdNf7_PiIsY1AEIM41GxmHUpuC46Va6M35oUDqXsdKldMCr5UGbxXUxhr5LzXWmzld6DMZV2W5NzvpObcuN2e6dLFQ4xyU28LM5sFnP1pePi7elxMX2p5q_Ps-nDvFJ1zVIla6sY6IaSBlhNmAEipeXaKMI5VlYBA4y4RS0wzLBsmyVvldKAOW0IsmRczIZe7eVa9MFtZTgIL534NHxYCRmSUxsjKEVSUQS1xm2tOXCVW1rNSIMtqS3krpuhqw9-tzcxibXfhzxcFLghjLQIgGcKBkoFH2Mw9vtXBOJ4B3FctDguWgx3yJG7IeJ8_9P5D377B96te4GJoAIyClT02pIPm6yW7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538371009</pqid></control><display><type>article</type><title>Intrinsic geometry and director reconstruction for three-dimensional liquid crystals</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pollard, Joseph ; Alexander, Gareth P</creator><creatorcontrib>Pollard, Joseph ; Alexander, Gareth P</creatorcontrib><description>We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/abfdf4</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Curvature ; geometric frustration ; Geometry ; Group theory ; Lie groups ; Liquid crystals ; Mathematical analysis ; Nematic crystals ; Physics ; Reconstruction ; soft matter ; Tensors</subject><ispartof>New journal of physics, 2021-06, Vol.23 (6), p.63006</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a4fc80d563508438e03aaf9dec3992cfc080219f1708282a75b97ccd0296531f3</citedby><cites>FETCH-LOGICAL-c448t-a4fc80d563508438e03aaf9dec3992cfc080219f1708282a75b97ccd0296531f3</cites><orcidid>0000-0003-2862-108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/abfdf4/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Pollard, Joseph</creatorcontrib><creatorcontrib>Alexander, Gareth P</creatorcontrib><title>Intrinsic geometry and director reconstruction for three-dimensional liquid crystals</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised.</description><subject>Curvature</subject><subject>geometric frustration</subject><subject>Geometry</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Nematic crystals</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>soft matter</subject><subject>Tensors</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtPwzAUhSMEEqWwM0ZiYCH02k4ce0QVj0qVWMpsuX4UV22c2u7Qf49LEDAgpmMdfedY996iuEZwj4CxCSK0rTAlMJFLq219Uoy-rdNf7_PiIsY1AEIM41GxmHUpuC46Va6M35oUDqXsdKldMCr5UGbxXUxhr5LzXWmzld6DMZV2W5NzvpObcuN2e6dLFQ4xyU28LM5sFnP1pePi7elxMX2p5q_Ps-nDvFJ1zVIla6sY6IaSBlhNmAEipeXaKMI5VlYBA4y4RS0wzLBsmyVvldKAOW0IsmRczIZe7eVa9MFtZTgIL534NHxYCRmSUxsjKEVSUQS1xm2tOXCVW1rNSIMtqS3krpuhqw9-tzcxibXfhzxcFLghjLQIgGcKBkoFH2Mw9vtXBOJ4B3FctDguWgx3yJG7IeJ8_9P5D377B96te4GJoAIyClT02pIPm6yW7A</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Pollard, Joseph</creator><creator>Alexander, Gareth P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2862-108X</orcidid></search><sort><creationdate>20210601</creationdate><title>Intrinsic geometry and director reconstruction for three-dimensional liquid crystals</title><author>Pollard, Joseph ; Alexander, Gareth P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a4fc80d563508438e03aaf9dec3992cfc080219f1708282a75b97ccd0296531f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Curvature</topic><topic>geometric frustration</topic><topic>Geometry</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Nematic crystals</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>soft matter</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollard, Joseph</creatorcontrib><creatorcontrib>Alexander, Gareth P</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollard, Joseph</au><au>Alexander, Gareth P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic geometry and director reconstruction for three-dimensional liquid crystals</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>63006</spage><pages>63006-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/abfdf4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2862-108X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2021-06, Vol.23 (6), p.63006 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_abfdf4 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Curvature geometric frustration Geometry Group theory Lie groups Liquid crystals Mathematical analysis Nematic crystals Physics Reconstruction soft matter Tensors |
title | Intrinsic geometry and director reconstruction for three-dimensional liquid crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20geometry%20and%20director%20reconstruction%20for%20three-dimensional%20liquid%20crystals&rft.jtitle=New%20journal%20of%20physics&rft.au=Pollard,%20Joseph&rft.date=2021-06-01&rft.volume=23&rft.issue=6&rft.spage=63006&rft.pages=63006-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/abfdf4&rft_dat=%3Cproquest_cross%3E2538371009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538371009&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_661ac6104d274d909c0297d8352f34f0&rfr_iscdi=true |