Intrinsic geometry and director reconstruction for three-dimensional liquid crystals

We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-06, Vol.23 (6), p.63006
Hauptverfasser: Pollard, Joseph, Alexander, Gareth P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/abfdf4