On the coupling of magnetic moments to superconducting quantum interference devices

We investigate the coupling factor φ µ that quantifies the magnetic flux Φ per magnetic moment µ of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual induct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2024-02, Vol.37 (2), p.25010
Hauptverfasser: Linek, J, Wyszynski, M, Müller, B, Korinski, D, Milošević, M V, Kleiner, R, Koelle, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the coupling factor φ µ that quantifies the magnetic flux Φ per magnetic moment µ of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating ϕ μ ( r , e ˆ μ ) vs. position r and orientation e ˆ μ of the dipole anywhere in space from the magnetic field B J ( r ) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg–Landau theory to calculate φ µ from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r ≳ a = inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for φ µ from simple filamentary loop models with simulation results for loops with finite width w (outer size A  >  a ), thickness d and London penetration depth λ L and show that for thin ( d ≪ a ) and narrow ( w   w , d . Moreover, we analyze the improvement of φ µ provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.
ISSN:0953-2048
1361-6668
DOI:10.1088/1361-6668/ad1ae9