Visualizing rheological mechanism of magnetorheological fluids

In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2022-02, Vol.31 (2), p.25027
Hauptverfasser: Shen, Yurui, Hua, Dezheng, Liu, Xinhua, Li, Weihua, Krolczyk, Grzegorz, Li, Zhixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25027
container_title Smart materials and structures
container_volume 31
creator Shen, Yurui
Hua, Dezheng
Liu, Xinhua
Li, Weihua
Krolczyk, Grzegorz
Li, Zhixiong
description In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.
doi_str_mv 10.1088/1361-665X/ac411d
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_ac411d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsac411d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-db4d88bab6c28977af86ffbde938ff1e901d1dcaa597dac376b63798399882c13</originalsourceid><addsrcrecordid>eNp9j71LxEAUxBdRMJ72lulsjLcvm-xHI8jhqXBgo2K3bPYjt0eSDdlLoX-9FyJiIVYP5s0M80PoEvANYM6XQChklJbvS6ULAHOEkh_pGCVY0CIDltNTdBbjDmMATiBBt28-jqrxn76r02FrQxNqr1WTtlZvVedjmwaXtqru7D78_rtm9CaeoxOnmmgvvu8Cva7vX1aP2eb54Wl1t8k0KcU-M1VhOK9URXXOBWPKcepcZawg3DmwAoMBo5UqBTNKE0YrSpjgRAjOcw1kgfDcq4cQ42Cd7AffquFDApYTv5xg5QQrZ_5D5HqO-NDLXRiH7jDwP_vVH_bYRklA5hLnJc6Z7I0jX3gGa10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualizing rheological mechanism of magnetorheological fluids</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shen, Yurui ; Hua, Dezheng ; Liu, Xinhua ; Li, Weihua ; Krolczyk, Grzegorz ; Li, Zhixiong</creator><creatorcontrib>Shen, Yurui ; Hua, Dezheng ; Liu, Xinhua ; Li, Weihua ; Krolczyk, Grzegorz ; Li, Zhixiong</creatorcontrib><description>In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ac411d</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>aqueous magnetorheological fluids ; fluorescence confocal laser scanning microscope ; rheological properties ; time series image</subject><ispartof>Smart materials and structures, 2022-02, Vol.31 (2), p.25027</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-db4d88bab6c28977af86ffbde938ff1e901d1dcaa597dac376b63798399882c13</citedby><cites>FETCH-LOGICAL-c359t-db4d88bab6c28977af86ffbde938ff1e901d1dcaa597dac376b63798399882c13</cites><orcidid>0000-0001-5454-3885 ; 0000-0002-6190-8421 ; 0000-0003-4067-0669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ac411d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Shen, Yurui</creatorcontrib><creatorcontrib>Hua, Dezheng</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Krolczyk, Grzegorz</creatorcontrib><creatorcontrib>Li, Zhixiong</creatorcontrib><title>Visualizing rheological mechanism of magnetorheological fluids</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.</description><subject>aqueous magnetorheological fluids</subject><subject>fluorescence confocal laser scanning microscope</subject><subject>rheological properties</subject><subject>time series image</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j71LxEAUxBdRMJ72lulsjLcvm-xHI8jhqXBgo2K3bPYjt0eSDdlLoX-9FyJiIVYP5s0M80PoEvANYM6XQChklJbvS6ULAHOEkh_pGCVY0CIDltNTdBbjDmMATiBBt28-jqrxn76r02FrQxNqr1WTtlZvVedjmwaXtqru7D78_rtm9CaeoxOnmmgvvu8Cva7vX1aP2eb54Wl1t8k0KcU-M1VhOK9URXXOBWPKcepcZawg3DmwAoMBo5UqBTNKE0YrSpjgRAjOcw1kgfDcq4cQ42Cd7AffquFDApYTv5xg5QQrZ_5D5HqO-NDLXRiH7jDwP_vVH_bYRklA5hLnJc6Z7I0jX3gGa10</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shen, Yurui</creator><creator>Hua, Dezheng</creator><creator>Liu, Xinhua</creator><creator>Li, Weihua</creator><creator>Krolczyk, Grzegorz</creator><creator>Li, Zhixiong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5454-3885</orcidid><orcidid>https://orcid.org/0000-0002-6190-8421</orcidid><orcidid>https://orcid.org/0000-0003-4067-0669</orcidid></search><sort><creationdate>20220201</creationdate><title>Visualizing rheological mechanism of magnetorheological fluids</title><author>Shen, Yurui ; Hua, Dezheng ; Liu, Xinhua ; Li, Weihua ; Krolczyk, Grzegorz ; Li, Zhixiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-db4d88bab6c28977af86ffbde938ff1e901d1dcaa597dac376b63798399882c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aqueous magnetorheological fluids</topic><topic>fluorescence confocal laser scanning microscope</topic><topic>rheological properties</topic><topic>time series image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yurui</creatorcontrib><creatorcontrib>Hua, Dezheng</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Krolczyk, Grzegorz</creatorcontrib><creatorcontrib>Li, Zhixiong</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yurui</au><au>Hua, Dezheng</au><au>Liu, Xinhua</au><au>Li, Weihua</au><au>Krolczyk, Grzegorz</au><au>Li, Zhixiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing rheological mechanism of magnetorheological fluids</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>25027</spage><pages>25027-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ac411d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5454-3885</orcidid><orcidid>https://orcid.org/0000-0002-6190-8421</orcidid><orcidid>https://orcid.org/0000-0003-4067-0669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2022-02, Vol.31 (2), p.25027
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_ac411d
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects aqueous magnetorheological fluids
fluorescence confocal laser scanning microscope
rheological properties
time series image
title Visualizing rheological mechanism of magnetorheological fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20rheological%20mechanism%20of%20magnetorheological%20fluids&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Shen,%20Yurui&rft.date=2022-02-01&rft.volume=31&rft.issue=2&rft.spage=25027&rft.pages=25027-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ac411d&rft_dat=%3Ciop_cross%3Esmsac411d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true