Visualizing rheological mechanism of magnetorheological fluids

In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2022-02, Vol.31 (2), p.25027
Hauptverfasser: Shen, Yurui, Hua, Dezheng, Liu, Xinhua, Li, Weihua, Krolczyk, Grzegorz, Li, Zhixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on fluorescence confocal laser scanning microscope is proposed to clearly shown the chain shape of magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different volume fraction and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional and three-dimensional image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis result of the rheological mechanism.
ISSN:0964-1726
1361-665X
DOI:10.1088/1361-665X/ac411d