Multilevel memristive non-volatile look-up table using two transmission gates one memristor memory cells

Memory structures can be found in most electronic devices ranging from field programmable gate arrays to smart devices. There is an increasing demand for these devices to be energy efficient, small, fast and have high density for storage. Memory devices such as the static random access memory (SRAM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor science and technology 2020-10, Vol.35 (10), p.105019
Hauptverfasser: Ian Wong, C W, Ho, Patrick W C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memory structures can be found in most electronic devices ranging from field programmable gate arrays to smart devices. There is an increasing demand for these devices to be energy efficient, small, fast and have high density for storage. Memory devices such as the static random access memory (SRAM) are widely used in many electronic devices, however SRAMs have a volatile memory architecture. A memristor is a unique electronic component with binary memory capabilities that are non-volatile which could replace the conventional memory cell architectures. This paper proposes the use of memristors in a quaternary 2-bit multileveled memory cell as a non-volatile look-up table (MNVLUT). The MNVLUT uses a dynamic ground with two transmission gates one memristor architecture with Schmitt triggers for the read and write operations. The proposed MNVLUT achieves lower energy consumption and writing time when compared to other existing memory architectures.
ISSN:0268-1242
1361-6641
DOI:10.1088/1361-6641/abaa59