Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma
A new mechanism of generation of the high-m compressional ULF waves in the magnetosphere is considered. It is suggested that the wave can be generated by the non-resonant instability of coupled Alfvén and drift compressional modes in the energetic component of the magnetospheric plasma. A stability...
Gespeichert in:
Veröffentlicht in: | Plasma physics and controlled fusion 2017-09, Vol.59 (9), p.95005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new mechanism of generation of the high-m compressional ULF waves in the magnetosphere is considered. It is suggested that the wave can be generated by the non-resonant instability of coupled Alfvén and drift compressional modes in the energetic component of the magnetospheric plasma. A stability analysis of the of the coupled modes in the inhomogeneous finite-β plasma in the dipole-like field in gyrokinetics is performed. A quadratic equation was obtained that determines mode frequency and the growth rate. The frequencies of both modes depend on the azimuthal wave number, m. The branches are merged at some critical m value, forming a mode with both real and imaginary parts of the wave frequency. This mode is amplified due to the instability called the drift coupling instability. The instability criterion was found. Its growth rate is determined by the mode coupling. |
---|---|
ISSN: | 0741-3335 1361-6587 |
DOI: | 10.1088/1361-6587/aa790c |