Convolution spatial-temporal attention network for EEG emotion recognition
In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and...
Gespeichert in:
Veröffentlicht in: | Physiological measurement 2024-12, Vol.45 (12), p.125003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125003 |
container_title | Physiological measurement |
container_volume | 45 |
creator | Cao, Lei Yu, Binlong Dong, Yilin Liu, Tianyu Li, Jie |
description | In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition. |
doi_str_mv | 10.1088/1361-6579/ad9661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6579_ad9661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-43e456f84ca579ef387a90b33e5e3aa91a94bc664a85deda757a8f4baf0ff3613</originalsourceid><addsrcrecordid>eNp1kE1PwzAMQCMEYuPjzgn1CBJlSZM07RFNY4AmcYFz5LUO6mibkrQg_j3tOnYCKZIj-9mJHyEXjN4ymiQzxmMWxlKlM8jTOGYHZLpPHZIpTWMVcs7FhJx4v6GUsSSSx2TCU6kUTdWUPM1t_WnLri1sHfgG2gLKsMWqsQ7KANoW622pxvbLuvfAWBcsFssAK7vNO8zsW10M9zNyZKD0eL6Lp-T1fvEyfwhXz8vH-d0qzCLJ21BwFDI2icig_yUanihI6ZpzlMgBUgapWGdxLCCROeagpILEiDUYaky_HD8lV-PcxtmPDn2rq8JnWJZQo-285oxHTLBIqh6lI5o5671DoxtXVOC-NaN6MKgHXXrQpUeDfcvlbnq3rjDfN_wq64HrEShsoze2c3W_rG4qBC2kZlF_JKVcN7np2Zs_2H_f_gELgoiK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141257</pqid></control><display><type>article</type><title>Convolution spatial-temporal attention network for EEG emotion recognition</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cao, Lei ; Yu, Binlong ; Dong, Yilin ; Liu, Tianyu ; Li, Jie</creator><creatorcontrib>Cao, Lei ; Yu, Binlong ; Dong, Yilin ; Liu, Tianyu ; Li, Jie</creatorcontrib><description>In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.</description><identifier>ISSN: 0967-3334</identifier><identifier>ISSN: 1361-6579</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/ad9661</identifier><identifier>PMID: 39577097</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; Attention - physiology ; attention mechanisms ; CNN ; data preprocessing ; EEG ; Electroencephalography ; emotion recognition ; Emotions - physiology ; Female ; Humans ; Male ; Neural Networks, Computer ; Signal Processing, Computer-Assisted ; Time Factors ; Young Adult</subject><ispartof>Physiological measurement, 2024-12, Vol.45 (12), p.125003</ispartof><rights>2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-43e456f84ca579ef387a90b33e5e3aa91a94bc664a85deda757a8f4baf0ff3613</cites><orcidid>0000-0002-8427-4548 ; 0009-0004-6964-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6579/ad9661/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Yu, Binlong</creatorcontrib><creatorcontrib>Dong, Yilin</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><title>Convolution spatial-temporal attention network for EEG emotion recognition</title><title>Physiological measurement</title><addtitle>PM</addtitle><addtitle>Physiol. Meas</addtitle><description>In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.</description><subject>Adult</subject><subject>Attention - physiology</subject><subject>attention mechanisms</subject><subject>CNN</subject><subject>data preprocessing</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>emotion recognition</subject><subject>Emotions - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Neural Networks, Computer</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0967-3334</issn><issn>1361-6579</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwzAMQCMEYuPjzgn1CBJlSZM07RFNY4AmcYFz5LUO6mibkrQg_j3tOnYCKZIj-9mJHyEXjN4ymiQzxmMWxlKlM8jTOGYHZLpPHZIpTWMVcs7FhJx4v6GUsSSSx2TCU6kUTdWUPM1t_WnLri1sHfgG2gLKsMWqsQ7KANoW622pxvbLuvfAWBcsFssAK7vNO8zsW10M9zNyZKD0eL6Lp-T1fvEyfwhXz8vH-d0qzCLJ21BwFDI2icig_yUanihI6ZpzlMgBUgapWGdxLCCROeagpILEiDUYaky_HD8lV-PcxtmPDn2rq8JnWJZQo-285oxHTLBIqh6lI5o5671DoxtXVOC-NaN6MKgHXXrQpUeDfcvlbnq3rjDfN_wq64HrEShsoze2c3W_rG4qBC2kZlF_JKVcN7np2Zs_2H_f_gELgoiK</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cao, Lei</creator><creator>Yu, Binlong</creator><creator>Dong, Yilin</creator><creator>Liu, Tianyu</creator><creator>Li, Jie</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8427-4548</orcidid><orcidid>https://orcid.org/0009-0004-6964-9083</orcidid></search><sort><creationdate>20241201</creationdate><title>Convolution spatial-temporal attention network for EEG emotion recognition</title><author>Cao, Lei ; Yu, Binlong ; Dong, Yilin ; Liu, Tianyu ; Li, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-43e456f84ca579ef387a90b33e5e3aa91a94bc664a85deda757a8f4baf0ff3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Attention - physiology</topic><topic>attention mechanisms</topic><topic>CNN</topic><topic>data preprocessing</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>emotion recognition</topic><topic>Emotions - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Neural Networks, Computer</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Yu, Binlong</creatorcontrib><creatorcontrib>Dong, Yilin</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lei</au><au>Yu, Binlong</au><au>Dong, Yilin</au><au>Liu, Tianyu</au><au>Li, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution spatial-temporal attention network for EEG emotion recognition</atitle><jtitle>Physiological measurement</jtitle><stitle>PM</stitle><addtitle>Physiol. Meas</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>45</volume><issue>12</issue><spage>125003</spage><pages>125003-</pages><issn>0967-3334</issn><issn>1361-6579</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39577097</pmid><doi>10.1088/1361-6579/ad9661</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8427-4548</orcidid><orcidid>https://orcid.org/0009-0004-6964-9083</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-3334 |
ispartof | Physiological measurement, 2024-12, Vol.45 (12), p.125003 |
issn | 0967-3334 1361-6579 1361-6579 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6579_ad9661 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Adult Attention - physiology attention mechanisms CNN data preprocessing EEG Electroencephalography emotion recognition Emotions - physiology Female Humans Male Neural Networks, Computer Signal Processing, Computer-Assisted Time Factors Young Adult |
title | Convolution spatial-temporal attention network for EEG emotion recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20spatial-temporal%20attention%20network%20for%20EEG%20emotion%20recognition&rft.jtitle=Physiological%20measurement&rft.au=Cao,%20Lei&rft.date=2024-12-01&rft.volume=45&rft.issue=12&rft.spage=125003&rft.pages=125003-&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/ad9661&rft_dat=%3Cproquest_cross%3E3132141257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132141257&rft_id=info:pmid/39577097&rfr_iscdi=true |