Convolution spatial-temporal attention network for EEG emotion recognition
In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and...
Gespeichert in:
Veröffentlicht in: | Physiological measurement 2024-12, Vol.45 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition. |
---|---|
ISSN: | 0967-3334 1361-6579 1361-6579 |
DOI: | 10.1088/1361-6579/ad9661 |