3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR)

. 3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly under-sampled k-space data in each dynamic (cine) frame, due to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-04, Vol.69 (9), p.95007
Hauptverfasser: Shao, Hua-Chieh, Mengke, Tielige, Deng, Jie, Zhang, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. 3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly under-sampled k-space data in each dynamic (cine) frame, due to the slow speed of MR signal acquisition. We proposed a machine learning-based framework, spatial and temporal implicit neural representation learning (STINR-MR), for accurate 3D cine-MRI reconstruction from highly under-sampled data. . STINR-MR used a joint reconstruction and deformable registration approach to achieve a high acceleration factor for cine volumetric imaging. It addressed the ill-posed spatiotemporal reconstruction problem by solving a reference-frame 3D MR image and a corresponding motion model that deforms the reference frame to each cine frame. The reference-frame 3D MR image was reconstructed as a spatial implicit neural representation (INR) network, which learns the mapping from input 3D spatial coordinates to corresponding MR values. The dynamic motion model was constructed via a temporal INR, as well as basis deformation vector fields (DVFs) extracted from prior/onboard 4D-MRIs using principal component analysis. The learned temporal INR encodes input time points and outputs corresponding weighting factors to combine the basis DVFs into time-resolved motion fields that represent cine-frame-specific dynamics. STINR-MR was evaluated using MR data simulated from the 4D extended cardiac-torso (XCAT) digital phantom, as well as two MR datasets acquired clinically from human subjects. Its reconstruction accuracy was also compared with that of the model-based non-rigid motion estimation method (MR-MOTUS) and a deep learning-based method (TEMPEST). . STINR-MR can reconstruct 3D cine-MR images with high temporal (
ISSN:0031-9155
1361-6560
DOI:10.1088/1361-6560/ad33b7