BrachyView: initial preclinical results for a real-time in-body HDR PBT source tracking system with simultaneous TRUS image fusion
A prototype in-body gamma camera system with integrated trans-rectal ultrasound (TRUS) and associated real-time image acquisition and analysis software was developed for intraoperative source tracking in high dose rate (HDR) brachytherapy. The accuracy and temporal resolution of the system was valid...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2019-04, Vol.64 (8), p.085002-085002 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A prototype in-body gamma camera system with integrated trans-rectal ultrasound (TRUS) and associated real-time image acquisition and analysis software was developed for intraoperative source tracking in high dose rate (HDR) brachytherapy. The accuracy and temporal resolution of the system was validated experimentally using a deformable tissue-equivalent prostate gel phantom and a full clinical HDR treatment plan. The BrachyView system was able to measure 78% of the 200 source positions with an accuracy of better than 1 mm. A minimum acquisition time of 0.28 s/frame was required to achieve this accuracy, restricting dwell times to a minimum of 0.3 s. Additionally, the performance of the BrachyView-TRUS fusion probe for mapping the spatial location of the tracked source within the prostate volume was evaluated. A global coordinate system was defined by scanning the phantom with the probe in situ using a CT scanner, and was subsequently used for co-registration of the BrachyView and TRUS fields of view (FoVs). TRUS imaging was used to segment the prostate volume and reconstruct it into a three-dimensional (3D) image. Fusion of the estimated source locations with the 3D prostate image was performed using integrated 3D visualisation software. HDR BrachyView is demonstrated to be a valuable tool for intraoperative source tracking in HDR brachytherapy, capable of resolving source dwell locations relative to the prostate anatomy when combined with TRUS. |
---|---|
ISSN: | 0031-9155 1361-6560 1361-6560 |
DOI: | 10.1088/1361-6560/ab0a7e |