Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy

We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2024-04, Vol.37 (4), p.45009
Hauptverfasser: Andrade, Pêdra D S, dos Prazeres, Disson S, Santos, Makson S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45009
container_title Nonlinearity
container_volume 37
creator Andrade, Pêdra D S
dos Prazeres, Disson S
Santos, Makson S
description We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable conditions on degree of the operator σ , we prove regularity estimates in Hölder spaces for any viscosity solution. We also examine the singular setting and prove Hölder regularity estimates for the gradient of the solutions.
doi_str_mv 10.1088/1361-6544/ad2c22
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ad2c22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad2c22</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-814626cd6afd80d1c56c4652c3ef52d88268a031102aae0baf1a125b355fc6ef3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j_kBrs1kN2k8SlErFATR85ImkzZlm9Qki-y_t0vFm6cZhvcebz5CboHdA1NqBrWESoqmmWnLDednZPJ3OicT9iCgms9BXJKrnHeMASheT4h7x03f6eTLQDEXv9cFM3UxUdd33UBDDJ0PqBP1oeAmxcp65zBhKF53FL96XXwMmX77sh3V27iPGwwY-0wtjlvSZrgmF053GW9-55R8Pj99LJbV6u3ldfG4qgyfi1IpaCSXxkrtrGIWjJCmkYKbGp3gVikulWY1AONaI1trBxq4WNdCOCPR1VPCTrkmxZwTuvaQjj-loQXWjpzaEUo7QmlPnI6Wu5PFx0O7i30Kx4L_y38AlQtswg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Andrade, Pêdra D S ; dos Prazeres, Disson S ; Santos, Makson S</creator><creatorcontrib>Andrade, Pêdra D S ; dos Prazeres, Disson S ; Santos, Makson S</creatorcontrib><description>We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable conditions on degree of the operator σ , we prove regularity estimates in Hölder spaces for any viscosity solution. We also examine the singular setting and prove Hölder regularity estimates for the gradient of the solutions.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad2c22</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>35B65 ; 35D40 ; 35R09 ; 35R11 ; degenerate operators ; Hölder regularity ; nonlocal operators ; singular operators</subject><ispartof>Nonlinearity, 2024-04, Vol.37 (4), p.45009</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd and the London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-814626cd6afd80d1c56c4652c3ef52d88268a031102aae0baf1a125b355fc6ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad2c22/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Andrade, Pêdra D S</creatorcontrib><creatorcontrib>dos Prazeres, Disson S</creatorcontrib><creatorcontrib>Santos, Makson S</creatorcontrib><title>Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable conditions on degree of the operator σ , we prove regularity estimates in Hölder spaces for any viscosity solution. We also examine the singular setting and prove Hölder regularity estimates for the gradient of the solutions.</description><subject>35B65</subject><subject>35D40</subject><subject>35R09</subject><subject>35R11</subject><subject>degenerate operators</subject><subject>Hölder regularity</subject><subject>nonlocal operators</subject><subject>singular operators</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEFLAzEQhYMoWKt3j_kBrs1kN2k8SlErFATR85ImkzZlm9Qki-y_t0vFm6cZhvcebz5CboHdA1NqBrWESoqmmWnLDednZPJ3OicT9iCgms9BXJKrnHeMASheT4h7x03f6eTLQDEXv9cFM3UxUdd33UBDDJ0PqBP1oeAmxcp65zBhKF53FL96XXwMmX77sh3V27iPGwwY-0wtjlvSZrgmF053GW9-55R8Pj99LJbV6u3ldfG4qgyfi1IpaCSXxkrtrGIWjJCmkYKbGp3gVikulWY1AONaI1trBxq4WNdCOCPR1VPCTrkmxZwTuvaQjj-loQXWjpzaEUo7QmlPnI6Wu5PFx0O7i30Kx4L_y38AlQtswg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Andrade, Pêdra D S</creator><creator>dos Prazeres, Disson S</creator><creator>Santos, Makson S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy</title><author>Andrade, Pêdra D S ; dos Prazeres, Disson S ; Santos, Makson S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-814626cd6afd80d1c56c4652c3ef52d88268a031102aae0baf1a125b355fc6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>35B65</topic><topic>35D40</topic><topic>35R09</topic><topic>35R11</topic><topic>degenerate operators</topic><topic>Hölder regularity</topic><topic>nonlocal operators</topic><topic>singular operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrade, Pêdra D S</creatorcontrib><creatorcontrib>dos Prazeres, Disson S</creatorcontrib><creatorcontrib>Santos, Makson S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade, Pêdra D S</au><au>dos Prazeres, Disson S</au><au>Santos, Makson S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>45009</spage><pages>45009-</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable conditions on degree of the operator σ , we prove regularity estimates in Hölder spaces for any viscosity solution. We also examine the singular setting and prove Hölder regularity estimates for the gradient of the solutions.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad2c22</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2024-04, Vol.37 (4), p.45009
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ad2c22
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 35B65
35D40
35R09
35R11
degenerate operators
Hölder regularity
nonlocal operators
singular operators
title Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20estimates%20for%20fully%20nonlinear%20integro-differential%20equations%20with%20nonhomogeneous%20degeneracy&rft.jtitle=Nonlinearity&rft.au=Andrade,%20P%C3%AAdra%20D%20S&rft.date=2024-04-01&rft.volume=37&rft.issue=4&rft.spage=45009&rft.pages=45009-&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad2c22&rft_dat=%3Ciop_cross%3Enonad2c22%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true