Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy
We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class C l o c 1 , α , for some constant α ∈ ( 0 , 1 ) . In addition, under suitable cond...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2024-04, Vol.37 (4), p.45009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the regularity of the solutions for a class of degenerate/singular fully nonlinear nonlocal equations. In the degenerate scenario, we establish that there exists at least one viscosity solution of class
C
l
o
c
1
,
α
, for some constant
α
∈
(
0
,
1
)
. In addition, under suitable conditions on degree of the operator
σ
, we prove regularity estimates in Hölder spaces for any viscosity solution. We also examine the singular setting and prove Hölder regularity estimates for the gradient of the solutions. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ad2c22 |