Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary

We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-01, Vol.36 (1), p.636-652
Hauptverfasser: Kukavica, I, Ożański, W S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 1
container_start_page 636
container_title Nonlinearity
container_volume 36
creator Kukavica, I
Ożański, W S
description We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.
doi_str_mv 10.1088/1361-6544/aca5e3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aca5e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaca5e3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1963-d8f034feff5d629aaf9778555d776be598175d17e9c380958c26f73a534fb4883</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqWwM3pgA1M7jmNnRKVQpEosMFuOYxNXqV05KaUSn8V38E04FDEhlvekq3uu3rsAnBN8TbAQE0ILggqW5xOlFTP0AIx-pUMwwiUjiHPCjsFJ1y0xJkRkdATeF0GrFjmPercy0Ly5rjdeGxgsVNBGY1C3iVYlhd7C2aY1Edo2bOHW9Q2cw-zy8wM673qnWvgaYu-063dJSbQ37qWpQmxCqIe8vjHfibAKG1-ruDsFR1a1nTn72WPwfDd7ms7R4vH-YXqzQJqUBUW1sJjm1ljL6iIrlbIl54IxVnNeVIaVgnBWE25KTUV6VOissJwqlqAqF4KOAd7n6hi6Lhor19Gt0gGSYDm0J4eq5FCV3LeXkKs94sJaLsMm-nTgf_aLP-w-eEkLmaxprmtLvwD-R36I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kukavica, I ; Ożański, W S</creator><creatorcontrib>Kukavica, I ; Ożański, W S</creatorcontrib><description>We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aca5e3</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>35Q31 ; 35R35 ; Euler equations ; free boundary ; Lagrangian coordinates</subject><ispartof>Nonlinearity, 2023-01, Vol.36 (1), p.636-652</ispartof><rights>2022 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1963-d8f034feff5d629aaf9778555d776be598175d17e9c380958c26f73a534fb4883</citedby><cites>FETCH-LOGICAL-c1963-d8f034feff5d629aaf9778555d776be598175d17e9c380958c26f73a534fb4883</cites><orcidid>0000-0003-1492-0847 ; 0000-0002-9234-2758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aca5e3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Kukavica, I</creatorcontrib><creatorcontrib>Ożański, W S</creatorcontrib><title>Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.</description><subject>35Q31</subject><subject>35R35</subject><subject>Euler equations</subject><subject>free boundary</subject><subject>Lagrangian coordinates</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqWwM3pgA1M7jmNnRKVQpEosMFuOYxNXqV05KaUSn8V38E04FDEhlvekq3uu3rsAnBN8TbAQE0ILggqW5xOlFTP0AIx-pUMwwiUjiHPCjsFJ1y0xJkRkdATeF0GrFjmPercy0Ly5rjdeGxgsVNBGY1C3iVYlhd7C2aY1Edo2bOHW9Q2cw-zy8wM673qnWvgaYu-063dJSbQ37qWpQmxCqIe8vjHfibAKG1-ruDsFR1a1nTn72WPwfDd7ms7R4vH-YXqzQJqUBUW1sJjm1ljL6iIrlbIl54IxVnNeVIaVgnBWE25KTUV6VOissJwqlqAqF4KOAd7n6hi6Lhor19Gt0gGSYDm0J4eq5FCV3LeXkKs94sJaLsMm-nTgf_aLP-w-eEkLmaxprmtLvwD-R36I</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kukavica, I</creator><creator>Ożański, W S</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1492-0847</orcidid><orcidid>https://orcid.org/0000-0002-9234-2758</orcidid></search><sort><creationdate>20230101</creationdate><title>Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary</title><author>Kukavica, I ; Ożański, W S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1963-d8f034feff5d629aaf9778555d776be598175d17e9c380958c26f73a534fb4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>35Q31</topic><topic>35R35</topic><topic>Euler equations</topic><topic>free boundary</topic><topic>Lagrangian coordinates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kukavica, I</creatorcontrib><creatorcontrib>Ożański, W S</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kukavica, I</au><au>Ożański, W S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>636</spage><epage>652</epage><pages>636-652</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aca5e3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1492-0847</orcidid><orcidid>https://orcid.org/0000-0002-9234-2758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2023-01, Vol.36 (1), p.636-652
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_aca5e3
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 35Q31
35R35
Euler equations
free boundary
Lagrangian coordinates
title Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local-in-time%20existence%20of%20a%20free-surface%203D%20Euler%20flow%20with%20H%202+%CE%B4%20initial%20vorticity%20in%20a%20neighborhood%20of%20the%20free%20boundary&rft.jtitle=Nonlinearity&rft.au=Kukavica,%20I&rft.date=2023-01-01&rft.volume=36&rft.issue=1&rft.spage=636&rft.epage=652&rft.pages=636-652&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aca5e3&rft_dat=%3Ciop_cross%3Enonaca5e3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true