Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary
We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate t...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2023-01, Vol.36 (1), p.636-652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that
u
0
∈
H
2.5
+
δ
is such that
c
u
r
l
u
0
∈
H
2
+
δ
in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/aca5e3 |