Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary

We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-01, Vol.36 (1), p.636-652
Hauptverfasser: Kukavica, I, Ożański, W S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 ∈ H 2.5 + δ is such that c u r l u 0 ∈ H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/aca5e3