Remarks on sparseness and regularity of Navier–Stokes solutions

The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-06, Vol.35 (6), p.2858-2877
Hauptverfasser: Albritton, Dallas, Bradshaw, Zachary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2877
container_issue 6
container_start_page 2858
container_title Nonlinearity
container_volume 35
creator Albritton, Dallas
Bradshaw, Zachary
description The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw et al 2019 Arch. Ration. Mech. Anal. 231 1983–2005; Grujić and Xu 2019 arXiv: 1911.00974 ) that a priori estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.
doi_str_mv 10.1088/1361-6544/ac62de
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac62de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac62de</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</originalsourceid><addsrcrecordid>eNp1UM1KAzEYDKJgrd495uLNtV-ySZo9luIfFAV_ziGb_SLb1mRJtoI338E39EncUvGkp4FhZpgZQk4ZXDDQesJKxQolhZhYp3iDe2T0S-2TEVSSFdMpk4fkKOclAGOalyMye8BXm1aZxkBzZ1PGgDlTGxqa8GWztqnt32n09M6-tZi-Pj4f-7jCTHNcb_o2hnxMDrxdZzz5wTF5vrp8mt8Ui_vr2_lsUTg21X1RV5VD6Rj3WAsH3AthGydAlbxiVa0EyLrkyDUoi2BVLaSUjZUMpQeQthwT2OW6FHNO6E2X2qH7u2FgtheY7V6z3Wt2FwyWs52ljZ1Zxk0KQ0ETYjClNMpwLbXpGj_ozv_Q_Rv7DSFDa94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Albritton, Dallas ; Bradshaw, Zachary</creator><creatorcontrib>Albritton, Dallas ; Bradshaw, Zachary</creatorcontrib><description>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw et al 2019 Arch. Ration. Mech. Anal. 231 1983–2005; Grujić and Xu 2019 arXiv: 1911.00974 ) that a priori estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac62de</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Navier–Stokes equations ; regularity theory ; sparseness</subject><ispartof>Nonlinearity, 2022-06, Vol.35 (6), p.2858-2877</ispartof><rights>2022 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</cites><orcidid>0000-0003-1003-5429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac62de/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Albritton, Dallas</creatorcontrib><creatorcontrib>Bradshaw, Zachary</creatorcontrib><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw et al 2019 Arch. Ration. Mech. Anal. 231 1983–2005; Grujić and Xu 2019 arXiv: 1911.00974 ) that a priori estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</description><subject>Navier–Stokes equations</subject><subject>regularity theory</subject><subject>sparseness</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KAzEYDKJgrd495uLNtV-ySZo9luIfFAV_ziGb_SLb1mRJtoI338E39EncUvGkp4FhZpgZQk4ZXDDQesJKxQolhZhYp3iDe2T0S-2TEVSSFdMpk4fkKOclAGOalyMye8BXm1aZxkBzZ1PGgDlTGxqa8GWztqnt32n09M6-tZi-Pj4f-7jCTHNcb_o2hnxMDrxdZzz5wTF5vrp8mt8Ui_vr2_lsUTg21X1RV5VD6Rj3WAsH3AthGydAlbxiVa0EyLrkyDUoi2BVLaSUjZUMpQeQthwT2OW6FHNO6E2X2qH7u2FgtheY7V6z3Wt2FwyWs52ljZ1Zxk0KQ0ETYjClNMpwLbXpGj_ozv_Q_Rv7DSFDa94</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Albritton, Dallas</creator><creator>Bradshaw, Zachary</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1003-5429</orcidid></search><sort><creationdate>20220606</creationdate><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><author>Albritton, Dallas ; Bradshaw, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Navier–Stokes equations</topic><topic>regularity theory</topic><topic>sparseness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albritton, Dallas</creatorcontrib><creatorcontrib>Bradshaw, Zachary</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albritton, Dallas</au><au>Bradshaw, Zachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on sparseness and regularity of Navier–Stokes solutions</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-06-06</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><spage>2858</spage><epage>2877</epage><pages>2858-2877</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw et al 2019 Arch. Ration. Mech. Anal. 231 1983–2005; Grujić and Xu 2019 arXiv: 1911.00974 ) that a priori estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac62de</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1003-5429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-06, Vol.35 (6), p.2858-2877
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ac62de
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Navier–Stokes equations
regularity theory
sparseness
title Remarks on sparseness and regularity of Navier–Stokes solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20sparseness%20and%20regularity%20of%20Navier%E2%80%93Stokes%20solutions&rft.jtitle=Nonlinearity&rft.au=Albritton,%20Dallas&rft.date=2022-06-06&rft.volume=35&rft.issue=6&rft.spage=2858&rft.epage=2877&rft.pages=2858-2877&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac62de&rft_dat=%3Ciop_cross%3Enonac62de%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true