Remarks on sparseness and regularity of Navier–Stokes solutions
The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum princi...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2022-06, Vol.35 (6), p.2858-2877 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2877 |
---|---|
container_issue | 6 |
container_start_page | 2858 |
container_title | Nonlinearity |
container_volume | 35 |
creator | Albritton, Dallas Bradshaw, Zachary |
description | The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013
Nonlinearity
26
289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw
et al
2019
Arch. Ration. Mech. Anal.
231
1983–2005; Grujić and Xu 2019 arXiv:
1911.00974
) that
a priori
estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem. |
doi_str_mv | 10.1088/1361-6544/ac62de |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac62de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac62de</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</originalsourceid><addsrcrecordid>eNp1UM1KAzEYDKJgrd495uLNtV-ySZo9luIfFAV_ziGb_SLb1mRJtoI338E39EncUvGkp4FhZpgZQk4ZXDDQesJKxQolhZhYp3iDe2T0S-2TEVSSFdMpk4fkKOclAGOalyMye8BXm1aZxkBzZ1PGgDlTGxqa8GWztqnt32n09M6-tZi-Pj4f-7jCTHNcb_o2hnxMDrxdZzz5wTF5vrp8mt8Ui_vr2_lsUTg21X1RV5VD6Rj3WAsH3AthGydAlbxiVa0EyLrkyDUoi2BVLaSUjZUMpQeQthwT2OW6FHNO6E2X2qH7u2FgtheY7V6z3Wt2FwyWs52ljZ1Zxk0KQ0ETYjClNMpwLbXpGj_ozv_Q_Rv7DSFDa94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Albritton, Dallas ; Bradshaw, Zachary</creator><creatorcontrib>Albritton, Dallas ; Bradshaw, Zachary</creatorcontrib><description>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013
Nonlinearity
26
289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw
et al
2019
Arch. Ration. Mech. Anal.
231
1983–2005; Grujić and Xu 2019 arXiv:
1911.00974
) that
a priori
estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac62de</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Navier–Stokes equations ; regularity theory ; sparseness</subject><ispartof>Nonlinearity, 2022-06, Vol.35 (6), p.2858-2877</ispartof><rights>2022 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</cites><orcidid>0000-0003-1003-5429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac62de/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Albritton, Dallas</creatorcontrib><creatorcontrib>Bradshaw, Zachary</creatorcontrib><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013
Nonlinearity
26
289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw
et al
2019
Arch. Ration. Mech. Anal.
231
1983–2005; Grujić and Xu 2019 arXiv:
1911.00974
) that
a priori
estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</description><subject>Navier–Stokes equations</subject><subject>regularity theory</subject><subject>sparseness</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KAzEYDKJgrd495uLNtV-ySZo9luIfFAV_ziGb_SLb1mRJtoI338E39EncUvGkp4FhZpgZQk4ZXDDQesJKxQolhZhYp3iDe2T0S-2TEVSSFdMpk4fkKOclAGOalyMye8BXm1aZxkBzZ1PGgDlTGxqa8GWztqnt32n09M6-tZi-Pj4f-7jCTHNcb_o2hnxMDrxdZzz5wTF5vrp8mt8Ui_vr2_lsUTg21X1RV5VD6Rj3WAsH3AthGydAlbxiVa0EyLrkyDUoi2BVLaSUjZUMpQeQthwT2OW6FHNO6E2X2qH7u2FgtheY7V6z3Wt2FwyWs52ljZ1Zxk0KQ0ETYjClNMpwLbXpGj_ozv_Q_Rv7DSFDa94</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Albritton, Dallas</creator><creator>Bradshaw, Zachary</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1003-5429</orcidid></search><sort><creationdate>20220606</creationdate><title>Remarks on sparseness and regularity of Navier–Stokes solutions</title><author>Albritton, Dallas ; Bradshaw, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-b99ce5c12feb4c02f44adc40632919b6405b32e2806ae0a6b4555da51e5f005a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Navier–Stokes equations</topic><topic>regularity theory</topic><topic>sparseness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albritton, Dallas</creatorcontrib><creatorcontrib>Bradshaw, Zachary</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albritton, Dallas</au><au>Bradshaw, Zachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on sparseness and regularity of Navier–Stokes solutions</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-06-06</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><spage>2858</spage><epage>2877</epage><pages>2858-2877</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013
Nonlinearity
26
289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw
et al
2019
Arch. Ration. Mech. Anal.
231
1983–2005; Grujić and Xu 2019 arXiv:
1911.00974
) that
a priori
estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac62de</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1003-5429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2022-06, Vol.35 (6), p.2858-2877 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ac62de |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Navier–Stokes equations regularity theory sparseness |
title | Remarks on sparseness and regularity of Navier–Stokes solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20sparseness%20and%20regularity%20of%20Navier%E2%80%93Stokes%20solutions&rft.jtitle=Nonlinearity&rft.au=Albritton,%20Dallas&rft.date=2022-06-06&rft.volume=35&rft.issue=6&rft.spage=2858&rft.epage=2877&rft.pages=2858-2877&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac62de&rft_dat=%3Ciop_cross%3Enonac62de%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |