Remarks on sparseness and regularity of Navier–Stokes solutions

The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-06, Vol.35 (6), p.2858-2877
Hauptverfasser: Albritton, Dallas, Bradshaw, Zachary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this paper is twofold. First, we give a simple proof that sufficiently sparse Navier–Stokes solutions do not develop singularities. This provides an alternative to the approach of (Grujić 2013 Nonlinearity 26 289–96), which is based on analyticity and the ‘harmonic measure maximum principle’. Second, we analyse the claims in (Bradshaw et al 2019 Arch. Ration. Mech. Anal. 231 1983–2005; Grujić and Xu 2019 arXiv: 1911.00974 ) that a priori estimates on the sparseness of the vorticity and higher velocity derivatives reduce the ‘scaling gap’ in the regularity problem.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/ac62de