On a probabilistic model for martensitic avalanches incorporating mechanical compatibility

Building on the work by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:), Torrents et al (2017 Phys. Rev. E 95 013001), in this article we propose and study a simple, geometrically constrained, proba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2021-07, Vol.34 (7), p.4844-4896
Hauptverfasser: Della Porta, Francesco, Rüland, Angkana, Taylor, Jamie M, Zillinger, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building on the work by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:), Torrents et al (2017 Phys. Rev. E 95 013001), in this article we propose and study a simple, geometrically constrained, probabilistic algorithm geared towards capturing some aspects of the nucleation in shape-memory alloys. As a main novelty with respect to the algorithms by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:), Torrents et al (2017 Phys. Rev. E 95 013001) we include mechanical compatibility. The mechanical compatibility here is guaranteed by using convex integration building blocks in the nucleation steps. We analytically investigate the algorithm's convergence and the solutions' regularity, viewing the latter as a measure for the fractality of the resulting microstructure. We complement our analysis with a numerical implementation of the scheme and compare it to the numerical results by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a martensitic phase transition arXiv:), Torrents et al (2017 Phys. Rev. E 95 013001).
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/abfca9