Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps

The Q1 lattice equation, a member in the Adler–Bobenko–Suris list of 3D consistent lattices, is investigated. By using the multidimensional consistency, a novel Lax pair for Q1 equation is given, which can be nonlinearized to produce integrable symplectic maps. Consequently, a Riemann theta function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2021-05, Vol.34 (5), p.2897-2918
Hauptverfasser: Xu, Xiaoxue, Cao, Cewen, Nijhoff, Frank W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Q1 lattice equation, a member in the Adler–Bobenko–Suris list of 3D consistent lattices, is investigated. By using the multidimensional consistency, a novel Lax pair for Q1 equation is given, which can be nonlinearized to produce integrable symplectic maps. Consequently, a Riemann theta function expression for the discrete potential is derived with the help of the Baker–Akhiezer functions. This expression leads to the algebro-geometric integration of the Q1 lattice equation, based on the commutativity of discrete phase flows generated from the iteration of integrable symplectic maps.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/abddca