Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations
We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv: 1811.09387 ). We show stability estimates...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2021-04, Vol.34 (4), p.2275-2295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo
et al
(2020
SIAM J. Appl. Dyn. Syst.
19
412–41), Herty and Visconti (2018 arXiv:
1811.09387
). We show stability estimates in the Euclidean Wasserstein distance for the mean field PDE by using optimal transport arguments. As a consequence, this recovers the convergence towards equilibrium estimates by Garbuno-Inigo
et al
(2020
SIAM J. Appl. Dyn. Syst.
19
412–41) in the case of a linear forward model. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/abbe62 |