Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations

We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv: 1811.09387 ). We show stability estimates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2021-04, Vol.34 (4), p.2275-2295
Hauptverfasser: Carrillo, J A, Vaes, U
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convergence to equilibrium of the mean field PDE associated with the derivative-free methodologies for solving inverse problems that are presented by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41), Herty and Visconti (2018 arXiv: 1811.09387 ). We show stability estimates in the Euclidean Wasserstein distance for the mean field PDE by using optimal transport arguments. As a consequence, this recovers the convergence towards equilibrium estimates by Garbuno-Inigo et al (2020 SIAM J. Appl. Dyn. Syst. 19 412–41) in the case of a linear forward model.
ISSN:0951-7715
1361-6544
DOI:10.1088/1361-6544/abbe62